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r ~
AI STRACT

A dispersion relation for surface plasmons (retardation

neglected) is obtained in the presence of spatial dispersion .
The physical syStem considered is one of vacuum separated by a

plane interface from a dielectric medium occupying the half—
space x3 > 0, and characterized by a nonlocal dielectric function
E(~ øw IX3X~), assumed to be symmetric in x3 and x. Here ~~ is
a two—dimensional wave vector whose components are parallel to
the interface, and w is the frequency of the electromagnetic
field in the medium. The dispersion relation has the form
l + k i,X(~ pw~x3.iO , x~~—O) — 0, and an explicit prescription for
obtaining the function X(

~ uwlx3xá) is presented. The use of the

dispersion relation is illustrated by applying it to two examples:

(1) a local dielectric constant; and (2) the nonlocal dielectric

function used previously by Maradudin and Mills. In both cases

previously obtained results are recovered,
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I. Introduction

Several years ago Ritchie and Marusak~ ~ published a deri-

vation of a dispersion relation for surface p1aaaons~
2
~ in the

presence of spatial dispersion. Their result has the simple

form 

k 
_ _ _ _ _ _ _

2 ~ — o  . (1.1)17 
~~~k E(k,w) 

-
~

Here E(~ ,w) is the frequency and wave vector dependent dielectric

constant of the material out of which the semi—inf inite medium

is composed , along whose planar interface with vacuum the surface

plasmon propagates. In Eq. (1.1) k~ is the magnitude of the

project ion of the three—dimensional wave vector on the plane

of the surf ace, and k3 is the component of normal to the surface.

A central assumption in the derivation of Eq. (1.1) is that

the electrons in the semi—infinite dielectric medium are reflected

specularly from the surface. It is this assumption which ultim-

ately leads to the appearance of the bulk dielectric constant

E(~ ,w) in Eq. (1.1).

However, in any real solid it is unlikely that all of the

electrons are reflected specularly from the surface. It is more

likely that some fraction are scattered specularly and the rest

diffusely, or that more general boundary conditions obtain. In

any came, it would seem to b~ desirable to have a dispersion

rflation for surface plasmons which does not depend, in its -

dsrivatio n, on some particular assumption about the nature of the

interaction of an electron with the boundary . Moreover , it

- -w -r~~ji9~ i~~~~~~~
—
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would also seem to be desirable to have s~x~h a dispersion rela—

tion which is not based on the assumption that the dielectric

properties of the medium supporting the surface plasmon are due

to a specific collective excitation in the medium, viz, an

electron plasma, so that it applies to systems in which

these properties are associated with other electric dipole

excitations such as ZR active phonons and excitons, for example,

or combinations of them. 
-

It seemed to be worthwhile, therefore, to try to obtain a

dispersion relation for surface plasmons in the presence of
— 

4

spatial dispersion of a form similar to that of Eq. (1.1) , but

without invoking the restrictive assumption of specular ref lee—

F tion of electrons at the boundary of the dielectric, in which

the central role is played by the nonlocal dielectric constant

of the medium, about which a minimum number of assumpt ions are

made.

In this paper we present the derivation of such a dispersion

relation. It is obtained in Section II, and its use illustrated

by application to systems for which the dispersion relation is

already known in Section lU. A discussion of the results

obtained is given in Section IV.

_ —~~~~-~~~~~~~~~~~~~
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II. The Dispersion Relation

We assume a dielectric medium which occupies the semi—infinite

region x3 > -0. The region x3 < 0 is occupied by vacuum. Because

the system possesses inf initesimal translational invariance in

directions parallel to the surface, the macroscopic electric

field and the displacement in it can be expressed in the f orms

- • 
-~ 

~~~~~~ iwtE(~ ,t) — E(l~wIx3)e ~ I (2.la)

~(~ ,t) _
~~~~~wIx 3) e . ’X ft~~~~

t (2.lb)

• A -, A A A awhere — x1k~ + x2k2 , x~ — x1x1 + x2x2 , and x1 and are two

mutually perpendicular unit vectors in the plane of the dielectric—

vacuum interface. Within the dielectric medium the relation
between ~(~~ij~uJx3) and ~(~iw I x 3) is assumed to be

- 
- 

~ (lnw1x3
) — 

~~~~~~~~~~~~~~~~~~~~~~~~ x3 ~ 0 , 

- 

S

- — -
. 

-
. 5- (2.2) -

~~~~~~~
ic i

~~~~
e variai~ies x~

Thus , we assume the nonlocal dielectric tensor of the semi—

infinite medium. to be isotropic . This assumption is similar to

and , because of tb. lower symmetry of the semi-infinite medium ,

say be as restrictive as the combined assumption by Ritchie and

Earamuk of an isotropic , nonlocal , bulk dielectric tensor and

• specular reflection of electrons from the boundary . The assumption

of isotropy , however, can be removed from both th present theory

and that of Ri tchie and Maruask . The result in .ach case is a.
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- 
more coiplicated dispersion relation. The assumption of specu-

lar reflection from the boundary, on the other hand, is essential

in the Ritchie—Marusak approach, while it is. not in the present

treatment . • 
. -

The Xaxwej .l equation 
5 - 

. I

I
— 0  

- 
(2.3) •

is now combined with Eq. (2.2) and with the equation of the
• electrostatic approximation

~~~,t) — — vcp(~~,t) , (2.4)

• ihere cp(~ ,t) is a scalar potential, to yield an integro— -

differential equation for ç(i~,lw 1x3
)., the Fourier coeff icient of

k~ I ~~~~~~~~~~~~~~~~~~~~ -* S dx~~ (~~ w~ x3x~) 
~~~~ 

cp(~~ w~x )  -o

-
- 

- - 

• 

. 

(2.5)

• 
• To solve Eq. (2.5) we begin by formally expanding both

• E(~ u w IX3Xj ) and (d/dx3) E( tu 1X3x~) in double series Of • H

functions complete and orthonormal in the semi—infinite interval

(O,~~ , and localized in the vicinity of the interface at x3 — 0:

-~~~
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E(~ 1w~x3x~) — 
~~ ~~~~~~~~~~~~~~~~~~~~~~~ - (2.6a)

• m,n—O

* 
E(~ 1w pC3Lp — ~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

Although our final result will be independent of any particular

choice for the {cp~ (x3)}, a convenient choice, for definiteness,

is the set of Laguerre functions defined by

~ 4px3 L~(ex 3) -

• (2.7)

I; -

where L~(x3) is the Laguerre polyiiomial, and ~ is a real ,
• positive parameter with the dimensions of an inverse length.

- 

- 

Because oX our assumption that E(~ f f W 1 x3x~) is symmetric, in

• x3 and x.~, it is the case that the coefficients {amu(k flw) } are

symmetric in the subscripts m and n.

‘We next expand q,(~ 1w~x3) and (d/dx3)~~(~~ w I x 3) in terms of

• the {~~ (x3)}: 
- - 

- - - • 
• 

5 

. • •

• 
- 

• 

~ (~ IwI x3) 
n—O 

A,~(~ nw)c~ (x3) 
- 

• 

• . (2 8a)

• 
*c(~~~~

xS) 

~ o 
Bn(

~ uw)cn (x3) , 

- 

• (2 .8b)

______ - •  
~~~~~~~ ~~~~~~~~~~~~~~~~~~ : - - ~~~~_

-
~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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so that

— $ ~~~~~~~~~~~~~ 1x3) (2.9a)

B~ (~~ w) — $dx3cp~(x3) 
~~~~~~

- ~(~~w~x3) . (2 9b)

When we substitute Eqs. (2.6) and (2.8) into Eq. (2.5) and use

the orthonormality of the .{~~Cx3)}, we find the latter takes the

form

k~ 
~ 

a~~(~ flw)A~(~ flw) — ~D bmu(~ flW )Bn(~ flW ) . (2.10)

The coefficients (A~(~~q,)) and CB~
(
~ nw)) are not independent,

however. If we integrate by parts the integral in Eq. (2.9b) we

• i obtain the result that

B~(~ 1~) — — 

~~ (0)~
(
~ u w 10+ ) — f ~~~~~~~~~~~~~~ q’~ (x3) , (2.11)

where the notation ~(~ 1w 1 0+) is intended to emphasize that it is

• the potential on the medium side of the interface that is being

considered. If we substitute Eq. (2.8a) into the second term on

the right hand side of Eq. (2.11) , we obtain finally the relation

— E e~~A~(~ 1w) , . 
• (2.12)

• • • - . - • . - • . S• .- ., ,• 

-

. 

5 

~~ 
‘ ‘ I, , ,- 

• 
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where

enp — $ dx3(.~ç cp~(x3))cp~
(x3) . (2.13a)

We note for future reference that e~p can be expressed equivalently

as

— $ dx3 $ dx~cp~(x3) 
~~~ 

~~~~~~~~~~~~~~ — — 
~~ (O)~~ (O) 

~
epn

(2.l3b)

On combining Eqs. (2 .10) and (2.12) we find that the coeff i—

cient B~ (~~,~w) is given by

B~(~ i,w) — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 

- 

(2.14)

where for convenience we have suppresSed the argument (~~w) of

the matrices a(~,1w) and S(~j1w) on the right hand side of this

equation. It follows from this result and Eqs. (2.2) , (2.4),

(2 6a) and (2.9b) that

D3(~ uwIO+) — k~cp(~ 11w 10+ ) Z
m,n—O -

(2.15)

We now turn to the vacuum region x3 cO. In this region the

function cp(~~w~x3) is readily found to have the form

k1x3
• q,(~ 1wlx3) — Ae 

- 

x3 < 0 , (2.16)

where A is an arbitrary constant , while the displacement compo-

nent D3(~~11w~ X3) becomes

k~x
D3(~~wJx3) — — Ak11e ~ x3 < 0 , (2.17)

.5-. —— —
’ 
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10.

The boundary conditions in the problem are the continuity

of cp(~ ,t) and D3(~ ,t) across the surface x3 — 0. The first of

these yields the relation cp(~~ w~ 0+) — A; the use of this result

together with Eqs. (2.15) and (2.17) in the second boundary

condition yields the dispersion relation for sux~f ace plasmons

in the form

l+k 1 ~D ~m (O)X mm (
~~w)~ n (0) — 0 , (2.l8a)

m,n—0 -

where

Xmm
(
~

Uw) — [k~r’ + ~~— 1~~—l~~~ . 2.18b

It is useful to point out that ~ç~~(~ i, w) is symmetric in m and
n . For this purpose it suffices to show that the matrix
k~r

1 + is a symmetric matrix. Inasmuch as the matrix
is symmetric because the matrix ~ is, it is necessary to show

only that the matrix ~t — is symmetric.
To show this we first relate the coefficients

• to the coefficients 
~
amn(~~iw )} . We see from Eq. (2 6b) that

bmu(
~ flw) - 

~ 
dx3 J dz ~~~~(x3) 

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~ . (2.19)

0 0  -

- 

- , An integration by- parts yields

bmm (
~~Rw) - - S m(0)~~~flW10~P~n~~P

- 5 dx3 5 dx~’ ~~~~~ ~~~~~~~~~~~~~~~~~~~ . (2.20)

We now s~1,stitute Eq. (2 .6a) into the right hand side of this

equation , and use Eq. (2 l3a) to obtain

- 
• 

.-

~~~~~~ 

-5 -

~~

- — - - - -

~~~

• - • -  .5- —- -• ;—-
~~~~~
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bmm(
~ IIw) — 

r~o 
{q~~(o)~~~(o) + e~~.} arn(~ flw)

— Z erm arn(~ fIw) • (2.21)

The second equality in Eq. (2 .21) follows from the use of Eq.

(2.13b).

It follows from Eq. (2.21) that the matrix X can be written

equivalently as

— ~ -‘(~
1’E)r’ = 

4.4
~
••

~~]•~•4’ - ~T (2.22)

where MT denotes the transpose of the matrix M. The matrix

is therefore symmetric, and can be written alternatively as

~~~(~ 11w) — [kj~r’ + r1T]~~ • ‘- -(2.18c)

Equation (2.18) may have some interest of its own in connec-

tion with purely numerical studies of surface plasmons in spatially

dispersive media . However , at this point we direct our efforts
• to re— expressing Eq. (2 .18) in a form in which the {~m

(x3)} no

longer appear explicitly or implicitly .
4We begin by introducing the function x(k,iw lx3x3), which is

defined by

• 

- 

x(Ziw 1x3x~j ) — Z~ ~~~~~~~~~~~~~~~ x3,x~ > 0. (2.23)
m,n—o

In terms of this functiai the dispers ion relation (2 .18) becomes

1 + k~ x (
~n~ 1°°) = 0. (2.24)

—-5 .5 
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To obtain the function x(~,w1x3x~) or more accurately,

the equations determining it, we return to Eq. (2.18c), which we

• rewrite as

E a~~ ~~~ + 
~~~~ 

empa~~
esrXsn - o~~. (2.25)

We now multiply- both sides of this equation by q~~(x3)ep~(x~) and

sum on m and n from zero to infinity. We recall the orthonormality

and completeness conditions

• 

8mn — 
~~~~~~~~~~~~~~~ - 

(2,26a )

— ó (x3— x ~). 
- 

(2 26b)

We next note that

E q,5(x 3) a~~ (~~g w) cp~ (x ~ ) — E~~(~~w1x3
x
~), 

(2.27)
m,n—o

I 
where E~~(~~w1x3x~

) is the inverse of E(~~w)x3x~) in the sense

that -

j’~ dz~ E
’(~ nwIx3x~ ) E  (~ 11w~x x ~)

- 

— E (~~W1x3x~
) E 1(~~w~x;x~) — 6(x3—X~). (2.28) 

-

We also use the relations

/ 
I m!n_o~

m (x3) emu~n (xi ) — - 6 (x3—x~) + ô(x3) 6 (xi)] (2. 29a)

~~~~~~~~~~~~~~~~~~~ 
— 

~~~~~~
_  6(x3 — Xi) . (2.29b)

1!- 
_ _ _ _  

_ _ _ _ _ _ _ _ _  

_ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~
-j - ~~~~~~~~ 

_ _ _ _ _  

.5 - 
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The result of all of this is to transform Eq. (2.25) into

k~ f0~~~E ~~~~ Ix 3x~)x(~~w lx~xi) — 

-

• 

- 

* s:dX~ ~~~~~~w1x3xP~~—t %(
~~f lW~

X
~

X
~~
) —

— o(x3)j ’ dx5 ~~~~~~~~~~~~~~~~ x(~ ow 1x~x~) — 6(x3=xi). (2.30) -

Finally, we see that the function xc~pwlx3zi) which satisfies the
integro—differential equation 

-

k~f r:~ 
E~~
(
~ ftwIX3X )x(~~wlXiXi

) — 
-

- 

— 

* ‘:~ 
E~~(~~wIx3x~) ~~—,X(~~wIx x~

) — 6(x3_xi), (2.31a)

together with the boundary condition

~~ ~~‘
(
~~~ 1° x~) ~~~ X (It~,w tx~x~) — 0, (2.3lb)

is a solution of Eq. (2.30) . As we are seeking electric fields

localized in the vicinity of the surface x3 — 0, the boundary

condition which must be imposed on X(~ UW 1X3Xi) at infinity is that
- 

u r n  X(l i w 1x3x~
) — 0. •(2.3lc)

x34~

Equation (2.24), together with the prescription for obtaining

x(~ nwlx3xj) given by Eqs. (2.31), is the central result ’ 
of this

section: the surface plasmon dispersion relation. In the next

• section we illustrate its use by applying it to two cases for which

the surface plasmon dispersion relation is known.

- - 5 - —  5 - - - ———~~~~~~~~~~~ •~~~~~~~~~ • • - .5--———— 
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III. Examples

In this section we solve Eqs. (2.31) for two choices of
• E(lnwlxaxi), one local and the other nonlocal, for which the surface

plasmon dispersion relation is already known, to illustrate the use

of the dispersion relation, Eq. (2.24) .

- A. A Local Dielectric Tensor

- We first consider the case in which E(~ gw1x3x ) is given by

E(
~ ,iw1x3x~

) — E(w)ô(x3— x3’), (3.1)

where E(w) is independent of it~ and of the coordinates x3 and

It follows that -

E ’(
~~iw I x 3xi) E (w) 6(x3 _xi). (3.2)

The equation satisfied by x(lnwlx3xi) in this case becomes 
- 

—
--5 --

E(w) X(~ l l w I x3x~
) — E~~J~~~~ x(~ ,wk 3xi) — 6(x3— x

~
) (3.3a)

together with the boundary condition

- * 
,((~ u w Ix3x~)~ — 0. 

- 
(3.3b)

• The solution of Eq. (3.3a) which vaiiishes as x3 ~ is

—k~ 1x —x ’~
x(~aw1x3xi) — —E (w) {~~ .

~~~~~~ ~ 
+A e  U 3 } (3 4)

where the first term is the particular integral and the second is

• 

- 

the complementary function, The coefficient A is determined

- 
• •, - • • ‘•~ -5~~~~

• •5-’.• —-5-.-- 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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with the aid of Eq. (3.3b), with the result that

~~~
) {e~~~~

3
~~~ + ~~~~~~~~~~~~ - 

-

When Eq. (3.5) is substituted into Eq. (2.24), we obtain as the

surface plasinon dispersion relation

1+ E ( w )  — 0 , 
- 

(3.6)

a well—known result for this case.~
3
~ -

B. A Nofliocal Dielectric Constant - 
- 

-

The second example we consider is based on the nonlocal

dielectric function -

- 
• 

w irlx3—x’l -

E(l,w113xi) — E06.(x3—xi) + i e 
• 

- 

x3,X~ � 0 , (3.7)

which -was ~ised by Birman and. Sein’4~, Maradudin and Miiis~~~ and

Agarwal, Pattaua ak., amid. ,oteS6 ’, in. ‘studies of various optical opti-
____  

cal pzop.rtiem ef iemi—infinite’ med~a in the presence of spatial
_______

dispersion. There ar. some unphysical features “ of the

.od.1 under ylng t~ia for~ for j x ~~~~~ as wifl ~~~~~~~ 
- -

- 
in the following section • However, because results based on its use are
available it serve, as a useful example to illustrate Eq. (2.24) ,
which is not rsstrict.d by these unphysical features . In Eq. (3.7)

c) ~~ ta• optical fr.qu.ncy dielectric constant, which is assumed
to be r.al and fr.quency independent ; is a plasma frequency;
D is a positiv, constant which defines the curvature of the exciton

- 

I 

• or transverse optical phonon dispersion curve at - 0; and r is
giv.n by 

-

—• - - . 5-  . — - •—.~ --— - - - 5  — . ‘ - - • -
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- 

(3.8)

so that Re r > 0, In r > 0. The frequency w0 in Eq. (3.8) is

that of the exciton or transverse optical phonon at ~ — 0.

The equation for the inverse dielectric function
Eq. (2.28) , in the present case takes the form

lw 2 - 

ir1x3—x~ t iE (
~~w1x3

x
~
) + 2E0& ~~~~ 

e C (~ flw1x~
z
~
) —

— E;
18(x3—x;). (3.9)

We apply the operator (d2/d4) + r2 to both sides of this 
-

equation to transform it into

(—
~~ 

+ ~2)C
’1~wix3x~~ 

— f(_!!~ + r2)6 x 3—x~~, (3.10)

where

- — (
(13 
~~L — k? + 

~j~) . 

.

and 
, 

. 

-

- 

— w~ + (w~/E0), 
‘

~ (3.llb)

so that Re ~ > 0, Im ~ > 0. We now use the fact that

‘d 2 2 2 2 io,
~
x3—x~~

• (—.~~
+ or ){6(x3-x~

) ÷ r— : e } —
-

- 

— (—4 + r2)o x3 -x~~ (3.12)

to write the solution of Eq. (3.10) in the form

_ _ _ _ _ _ _ _ _ _  - - ---5-5-—-——- --5-- • 
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• 

- 

~2 is~x3—x~~
E 1(~~i W I Z 3x~ ) — f 6(x3—x~) + —f 2~

_
~~~ —_. 

- + Ae ~~. 

- 

(3.13)

The coefficient A is obtain•d by requiring that the expression

(3.13) also satisfy the original integral equation (3.9) . In this

way we obtain finally the result that

E~~~(~~n w 1Z 3Xi) — f 6(x3—x~) +

+ ~~~~~ [e~~
1X3

_X
31 

+ 
~~~~~ 

e
i
~~~3~~~~

]

f 6(x~—x~) + f(It ,,w l x3x ) .  (3.14)

F 

• 

We note the result that

+ ~
2)f

~~0w~
x3x~ 

— —

~~~~~ 

6(x3—x~). (3.15) -

The integral equation (2.3la) for the function ~ (k i w I x3x~
)

now takes the form

1 
(

‘ d2 
— k~})((~ fl w~x3xi) + 

* 
S: dx~f(l~w~x3x~) x

X x(~~~w I z~~~~
) — k~ $ d f ftw~x3x x~ w)x~~~) —

• 
— ~ 6(X3~ X~ ) .  (3 .16)

We now apply the operator (d2/dx~) + ~2 to both sides of this

equation , and use Eq. (3.15), to obtain

5- -~—--,-_ —.~- ~- 
~~~~~~~ 

•
~~

5
~ 

-5.- - - ~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ - ‘.,.
~
.--- — — -  - -  ‘ ---
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(_4 — k~)~—~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —E 0(—~~ + ai2)6(x3—x~

), (3.17)

wher e 2 2
— (

W0 W 
+ k~ — .i?~:L)~ — —ir, (3.18)

so that Re ~ > 0, Im p ’< 0. The solution of Eq. (3.17) which

vanishes at infinity is given by
—k ~x —x’l

x(~ ew~x3xi) — — 

e
2 — k ~ 

[c~ +k~) ° -

2 2 k1x3 —ex3— ( ~~ +~~) —-.—~~— —---—— ] + C1e + C 2e . (3.19)

The two coefficients C1 and C2 in this solution are determined

from the two equations o tained by requir [ng that the solution

(3 .19) satisfy the integro—differential equation (3.16) on the one

hand , and from the boundary condition (2.31b) on the other. After

some tedious analysis the following result is obtained:

_ _ _ _  

—kp Iz —x’~
— ~~~W) [e 

3 3 
+ -

ik 1+~ ik1—r k 0 (X3+Xi) (E (w) — E0) ir~x3—x~~e , (3 .20)

where 2
E(w) E0 + 2 - (3.21)

wo—w - iwy -

i~ the bulk dielectric constant at ~ — 0, and where Eq. (3.18)

ha. been used .
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• Substitution of Eq. (3.20) into Eq. (2.24) yields as the

dispersion relation for surface plasmons
• 

- ik~+U ik~—r1 + E~w) 
[i + ir ~j~~ ik 11+rl + 2~~(E(w) 

— E0) — 0. (3.22)

-
• 

This equation can be rearranged into the form -

E(w)—E
1 + E(w) — ik~[E(~) (k~+ia)(~~—ir) 

+ 
~~ 

• (3.23)

Inasmuch as the right hand side of this equation is explicitly

proportional to k
~, in obtaining the frequency of the surface

plasmon to lowest nonvanishing order in k~ it suff ices to set

— 0 in the expression in braces. We thus obtain the approximate

dispersion relation

1. 1 + E(w) ~~ i p [E( (~~— .~) + 
E (w)— E

o] . (3.24),

At this point we neglect the intrinsic damping in the dielectric

medium and let y tend to zero through positive values. In this

limit we find that

• ~~~ —0) — iD~~~~(~~~ 
- w2)~

- ..a 2 2 
-

- 

- (3.25)
• 

- 
—

. 
D ~~(iii 

— w0) -

x ( .  — 0) — iD~~(~~ 
- w2)* W <WL

- 

1. (3.26)
— D~~ (w 2 w~)2 W > W L

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -
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We next note that-t he equation E (ui) + 1 — 0 is the surface

plasmon dispersion relation in the absence of spatial dispersion .

Consequently the frequency of the surface plasmon in the absence

of spatial’ dispersion, w~ , is the solution of the equation

+ 1 — 0 . (3.27)

We thus write tile solution of Eq. (3.24) in the form

iii — w8 + lsw5 , (3.28)

where ~w5 is of first order in k1. Substituting- Eq. (3.28) into

Eq. (3.24) and linearizing the resulting equation in with the

aid of Eq. (3.27) we obtain

1k1 r 3+E 1
i — ° i - 

(3.29)
- 

E ’ (w
5
) L~ 2FJ k11 0

- (11~~~ 1(1
5

If we denote the static (w O) value of the bulk dielectric

• constant at ~ — 0 by E~ , we have the relation

+ (cu~/w~) . (3.30)

With the substitution of Eq. (3.21) (with y’O) into Eq. (3.27) we

find tha t the frequency of the surface plasmon in the absence of

spatial dispersion is given by •

2 2 W
(3.31a)

- or equivalently

______ •
_

‘
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w~ - 
~~~ J (3.31b)

It is readily determined tha t

W O < W S < W L . 
- 

(3.32)

These inequalities, together with Eqs. (3.25) and (3.26), enable
• 

us to express ~w5 given by Eq. (3.29) in the form

— 
D~k0 r 1 • ‘

_ 

i(E0+3) ~ . 1
~ E’(w~) L (w~~—w~)~ 

2’ (w~~_ w~)*J

— 
D~(i+E0)~k11 

[E0~ 
— i 

Eo+ 3] 33)

which agrees completely with the result for Aw5 obtained by
Maradudin and Mi1ls~

5’ on letting the speed of light tend to

infinity in the surface polariton dispersion relation they
obtained on the basis of the dielectric constant (3.7).

- 
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I: IV. Discussion

In this paper we have obtained an explicit dispersion relation

for surface plasmons at the interface between vacuum and a semi—

infinite dielectric medium occupying the half—space x3>0 and

characterized by a nonlocal dielectric constant E(~~wIx3z~). It

should be remarked that the derivation of Eqs. (2.24) and(2.31)

presented here is somewhat artificial. It should be possible to

obtain these results more directly , but we have not attempted to

do so. It also appears as if the use of Eqs. (2.24) and (2.31)

‘ to obtain the surface plasmon dispersion relation may involve

lengthier calculations than are required in a more conventional

approach based on a direct solution of the equations of electro-

statics. Nevertheless, it still seems useful to have an explicit

dispersion relation, Eq. (2.24) , with a definite prescription for

obtaining the function x (E ,1 w~ x3x~) entering it, Eq. (2.31). For

example, in the case of dielectric constants of more complicated

form than those considered in the preceding section Eq. (2.31)

can serve as the basis for approximate determinations of

e.g. by variational methods.’ ‘

The fact that the method developed here yields the same surface

plasmon frequency, Eqs. (3.28), (3.31), and (3.33), as was obtained

by a rather different method by Maradudin and Mi11~~~~ is of some

independent interest for the following reason. The dielectric

constant (3.7) is obtained by partially Fourier transforming the -

• bulk dielectric constant 
‘

E(k,w) — + 2 2 2 (4.1)
w0+Dk —w -iu~’
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according to
• - • I• dk ik (x -x)

E(E~wIx3x~) 
— 

~f ~~!E(~ ,w)e ~ ~ , (4.2)

and restricting x3 and x to be positive . Recently Horing~~~ used

as given by Eq. (4.1) in tile Ritchie—Marusak dispersion

relation, Eq. (1.1), and obtained an expression for the frequency

of a surface p]asmon which differs from the Maradudin-Mills result,

Eqs. (3.28) , ~3.31), and (3.33) . This difference is not very

surprising in fact. As we have noted in the Introduction, under-

lying the Ritchie—Marusak dispersion relation is the assumption

tha t electrons are ref lected specularly from the surface of the

solid. The dielectric constant (3.7), on the other hand, repre—
-
. sents the so—called dielectric approximation, in which the bulk

F- I - dielectric constant is partially Fourier transformed according to

Eq. (4.2) , after which x3 and x are restricted to be positive , so

that the resulting E (~ i i w I x3x.~) is no longer a function of

~

• 

J 

but depends on x3 and x separately. It is known that the dielectric

approximation does not conserve particle number (8
~
1 , and causes the

surface to act as a source or of ener gy~~~, neither of which

is the case when specular - d4 is assumed . Thus a different

physical situation is being considered in Boring ’s work from that

assumed in the work of Maradudin and Mills. Consequently, it is

not surprising that different surface plasmon frequencies are

obtained in these two calculations. However, this example points

up the desirability of having a dispersion relation for surface

plasmons which is valid for more general physical situations than

- - - — - -5-- .5— - — ‘ . 5 -’ . - .-’ --— - - — -- - - -. .- -  - — .5-’ 
_ _ _
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- is represented by the assumption of specular reflection at the

surface. Equations (2.24) and (2.31) provide such a dispersion

relation .
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